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Abstract— This work presents a motion capture-driven lo-
comotion controller for quadrupedal robots that replicates
the non-periodic footsteps and subtle body movement of an-
imal motions. We adopt a nonlinear model predictive control
(NMPC) formulation that generates optimal base trajectories
and stepping locations. By optimizing both footholds and base
trajectories, our controller effectively tracks retargeted animal
motions with natural body movements and highly irregular
strides. We demonstrate our approach with prerecorded animal
motion capture data. In simulation and hardware experiments,
our motion controller enables quadrupedal robots to robustly
reproduce fundamental characteristics of a target animal mo-
tion regardless of the significant morphological disparity.

I. INTRODUCTION

Legged animals continue to inspire roboticists with their
elegant motions. Not only do they possess impressive athletic
motor skills, but even their slower-paced walking gaits are
distinctively smooth and graceful. Reproducing such move-
ments on legged robots comes with great challenges due
to the limited understanding of the underlying patterns and
principles.

A common trend in recent research addressing this chal-
lenge is to leverage animal motion capture data [1, 2, 3, 4].
This approach requires a control pipeline to bridge the gap
in morphology between animals and robots and to robustly
track target motions that inherit the agile and non-periodic
nature of animal movements.

This paper presents a motion capture-driven locomotion
control method capable of recreating animal motions on
quadrupedal robots. To this end, we extend our previous
work [4] by adopting a novel nonlinear model predictive
control (NMPC) formulation [5] that jointly optimizes for
dynamically feasible base trajectories and stepping locations
using the variable-height inverted pendulum model (VHIPM)
[6]. The foothold optimization significantly improves the
robustness of the system to external disturbances and enables
a robot to track retargeted animal motions with small vari-
ations in body movements and frequent flight phases. We
compute the required derivatives using sensitivity analysis
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Fig. 1: The quadrupedal robot Unitree A1 (left) and an alpine sheep (right).
We recorded walking motions of the sheep using a marker-based motion
capture system, and reproduced the retargeted motion profiles on the robot.

(SA) [7, 8, 9] and employ a sparse Gauss-Newton (SGN)
method [10] to efficiently solve an unconstrained, optimal
control problem.

We validate our approach in simulation and through hard-
ware tests with the two different-sized quadrupedal robots,
Unitree Aliengo [11] and Unitree A1 [12]. In our exper-
iments, we reproduce a variety of motion clips recorded
from a dog and sheep on the robots. As our video footage 1

shows, the resulting robot motions preserve irregular footstep
timings and subtle body movements seen in animal motions.
Since our controller jointly optimizes stepping locations and
a base trajectory, it tracks retargeted animal motions more
robustly than our previous method [4], which was based on
a heuristics-based foothold planning strategy and a linear
model predictive control (LMPC) formulation [13].

In summary, the main contribution of this paper is twofold.
First, we present a novel NMPC formulation for quadrupedal
locomotion capable of robustly handling arbitrary gait pat-
terns. Second, we integrate the NMPC into our motion
control pipeline that replicates the non-periodic footsteps and
subtle body movements of animal motions.

II. RELATED WORK

This work aims to reproduce animal motions on four-
legged robots using a model predictive control (MPC)
method. Thus, we present previous literature on animal-like
behaviors on quadrupedal robots in Section II-A and MPC
strategies for legged locomotion in Section II-B, respectively.

1The video is available in https://youtu.be/TVV_GcNZ0Ts

https://youtu.be/TVV_GcNZ0Ts


Fig. 2: The trot gait of a dog (left) reproduced on Unitree Aliengo (middle)
and Unitree A1 (right).

A. Animal Motion on Quadrupedal Robots
Many methods to recreate animal motions on four-legged

machines rely on marker-based motion capture data recorded
from animals [1, 4, 3, 2]. This approach preserves the pat-
terns of animal movements. However, since the morphology
of robotic systems is significantly different from their natural
counterpart, it requires a remapping procedure to ensure that
the resulting target motions are feasible on a robot.

Peng et al. [1] map a set of keypoints on an animal’s
body with corresponding target keypoints on a robot. They
convert the position trajectories into joint trajectories using
inverse kinematics. Eventually, a behavior-specific control
policy is trained by a reinforcement learning algorithm in a
simulated environment and afterward deployed to hardware.
Li et al. [3] adopt a similar approach with an additional
post-processing step that fits motion primitive parameters
for a robot’s base and foot trajectories in a physically
simulated environment. By doing so, they transform an ani-
mal motion into a dynamically feasible target robot motion
which a model-based controller can effectively track without
behavior-specific tuning.

Yin et al. [2] use a learned gait planning policy to imitate
the footfall patterns of an animal. The policy learns to adapt
the footfall timings of an input animal footstep sequence so
that a quadratic program-based whole-body controller tracks
accordingly-generated reference trajectories for a robot.

In our previous work [4], we also transfer an animal
footfall timings to robots. Additionally, we extract the body
height and speed profiles of an animal motion and scale
them according to the dimensions of a target robot platform.
Then, we distill this information into reference base and foot
trajectories; finally, we employ an LMPC controller based
on the linearized single rigid body dynamics (SRBD) model
[14, 13] to track them.

In this work, we employ the same motion transfer method
from our previous work [4]. In contrast to keypoint-based
motion retargeting methods [1, 3], we transfer only high-
level information for a target animal motion. This approach
is not constrained by a specific morphology; thus, it enables
easy adaption to different robot platforms with mocap data
sets collected from various legged animals – see Fig. 2.
Meanwhile, we further improve the robustness of our model-
based motion tracking controller by introducing a novel
NMPC formulation for generating optimal, dynamically fea-
sible base trajectories and footholds. The latter turns out
to be crucial to prevent a robot from reaching unstable
configurations when the target animal motions feature abrupt
speed changes or fast-paced behaviors.

B. Model Predictive Control for Legged Locomotion

MPC for legged locomotion has been extensively studied
by the robotics community. Most implementations solve
a finite-horizon optimal control problem with simplified
dynamics models. Carlo et al. [14] demonstrate an LMPC
method on the four-legged robot MIT Cheetah 3 [15] by
planning ground reaction forces with a simplified SRBD
model. Kim et al. [13] extend Carlo et al.’s framework
by complementing it with a whole-body impulse control
implementation. Ding et al. [16] propose an LMPC controller
with a variation-based linearization scheme for the SRBD
model that simplifies the rotational dynamics and frees
them from gimbal lock and quaternion unwinding issues.
The above LMPC approaches are shown to be effective
for performing dynamic maneuvers. However, they rely on
Raibert’s foot placement rules [17] for planning footholds.
In our experiments described in Section V, such heuristic
strategies prove insufficient to reject external disturbances
for aggressive target motions, stressing the necessity of a
dynamics-aware foothold optimization method.

Optimizing stepping locations alongside the system trajec-
tories within a single MPC framework introduces nonlineari-
ties and complexity: consequently, it requires efficient solvers
and special measures to prevent convergence to undesirable
solutions. Bledt et al. [18] address these issues by adopting
a foothold regularization procedure based on heuristic rules.
The authors successively extend their approach by generating
more polished, regularizing heuristics with a data-driven
method [19, 20]. In contrast, our method does not require
heuristics, and it yields motion controllers that can adapt
stepping locations based on the morphological differences
between a robot’s kinematic design and the anatomy of the
imitated animals.

In recent years, MPC methods based on differential dy-
namic programming (DDP) have seen numerous successful
applications on quadrupedal robots. For instance, Neunert
et al. [21] use a Gauss–Newton multiple shooting (GNMS)
approach to optimize for both stepping locations and timings
using the full system dynamics of ANYmal [22]. Grandia
et al. [23] propose computing a feedback policy with a
DDP-based algorithm and using it to bridge the gap be-
tween the low MPC update frequency and the fast rates of
an inverse dynamics-based controller. While powerful, the
above approaches solve high-dimensional systems, and thus
they strictly rely on high-performance implementations. In
contrast, we advocate adopting simpler models that enable
the desired animal motions on a robot. More specifically, we
achieve this by jointly optimizing stepping locations and a
base trajectory subject to the inverted pendulum dynamics.
Using a direct single shooting method [24], we efficiently
solve an unconstrained, parameterized optimal control prob-
lem in a receding horizon fashion.

Finally, we highlight the MPC method by Xin et al. [25]
that employs the linear inverted pendulum model (LIPM)
[26, 27] to formulate a QP problem that optimizes relative
stepping locations for gait patterns involving exclusively
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Fig. 3: Control pipeline overview. Each stage (green blocks) generates motion primitives or control signals using information (black arrows) from the
previous stage. As a first step, we extract a body movement profile (blue spheres/arrows) and a sequence of contact (green spheres) and swing (red
spheres) foot timings from a target animal motion. Next, we generate a reference base trajectory (red dots) and footholds (red circles). Then, an MPC
planner optimizes the reference signals obtained based on a simplified dynamics model (orange dots/circles). Finally, a whole-body controller calculates
joint torque and acceleration commands as well as ground reaction forces (green arrows) given the planned base and foot trajectories (purple arrows.)

single-support phases. We similarly elect to optimize relative
footsteps, but we do so through a nonlinear programming
(NLP) problem based on the more expressive VHIPM [6].
Moreover, by parameterizing the center of pressure positions,
we are not restricted in the choice of gaits.

III. PIPELINE OVERVIEW

Our control pipeline converts target animal mocap data
into joint torque commands for a quadrupedal robot in
four stages (see Fig. 3). First, we process the motion data
to extract a body movement profile and footstep timings.
Specifically, we collect trajectories of forward, sideways, and
turning speed signals, as well as parts of the body pose
we want to reproduce, such as body height 2. We multiply
each quantity by a hand-tuned scaling factor that addresses
the dimension and actuation power discrepancy between the
robot and the animal. Then, we extract a sequence of contact
and swing phase timings for each animal limb. When these
data are unavailable from a given motion clip, we use a
simple threshold scheme that detects a swing phase if

kvfootk2 > ✓velocity or zfoot > ✓height , (1)

where ✓height and ✓velocity are the specified thresholds for
the height zfoot and velocity vfoot of a foot, respectively.
Additionally, we discard a phase transition if the subsequent
phase lasts less than a time duration threshold ✓phase. We refer
the reader to Table II for a complete list of the parameter
values we used in our experiments.

In the second stage, we generate reference base trajectories
and footholds for the desired robot motion. We adopt the
scaled base heights from the target animal body trajectory as
reference signals for our MPC planner. We further compute
the reference horizontal base position coordinates pref

base,xy
and heading angles  ref by numerically integrating the hori-
zontal velocity components of the animal motion. Next, we
determine the reference footholds rref

foot,i 2 R2 for the foot i

2With a minor modification, we note that body pitch angle can be included
in the movement profile for target animal motions where a variation of body
pitch angle is salient.

so that they lie below the corresponding hip at the middle of
the stance phase. More formally, given the start time tstance
of a stance phase, we can write the corresponding reference
stepping location as:

rref
foot,i = pref

base(tmid-stance) +Rz

�
 (tmid-stance)

�
phip,i , (2)

tmid-stance = tstance + 0.5�tstance , (3)

where Rz is the rotation matrix around the z-axis, phip,i is
the position of the ith hip with respect to the base local frame,
and �tstance is the duration of the stance phase. We note that
this approach helps to regularize the foothold optimization
towards kinematically feasible solutions.

Third, we refine the base trajectories and stepping loca-
tions obtained from the previous stage while accounting for
the dynamic effects of a robot’s movement. For this purpose,
we employ a novel MPC formulation with a simplified dy-
namics model – see Section IV. Given a pair of consecutive,
optimized footholds, we generate target trajectories for the
corresponding foot by interpolating cubic Bezier curves.

Finally, we track the optimized robot base and foot trajec-
tories using a QP-based whole-body controller (WBC). We
refer the reader to our previous papers [4, 7] for more details
about our WBC implementation.

IV. METHOD

This section presents our nonlinear MPC method for
parameterized, discrete-time dynamical systems. We intro-
duce sensitivity analysis as a tool to efficiently compute
the derivatives of a system dynamics required by our SGN
solver. Our experiments adopt the VHIPM as a simplified
template [28] for a legged system, and we augment it by
including stepping locations as input parameters. However,
our formulation can generalize to multiple dynamics models
for quadrupedal robots [5].

A. Derivatives of General Dynamics
In a time-discretized setting, we let xk 2 Rn and uk 2 Rm

be the state and control input vectors of a dynamical system
at time step k. Also, let p 2 Rp be a time-invariant vector



of system parameters. Then, for k 2 {0, 1, . . . , NT � 1},
we can express the dynamics in the following form:

xk+1 = gk(xk, uk, p) , (4)

where gk : Rn ⇥ Rm ⇥ Rp ! Rn is a differentiable func-
tion capturing the system evolution at time step k. In this
formulation, we can use both uk and p as control variables
to drive the system towards desired states: the former only
affects the dynamics at time step k, whereas the latter does
so for multiple time steps. More specifically, in our NMPC
formulation described in Section IV-C, uk is the control input
at time step k while p is a set of footholds over a time
horizon.

We stack state and input vectors as

X :=
⇥
x>
1 x>

2 . . . x>
NT

⇤>
,

U :=
⇥
u>
0 u>

1 . . . u>
NT�1 p>⇤> ,

where NT denotes the time horizon. Given the measured
state x0, the vector X can be uniquely determined as a
function of U through forward integration of (4). Thus, we
can write X = X(U).

Let J (X, U) be a cost function that depends on both the
stacked state and input vectors. We are concerned with find-
ing the control inputs and parameters U⇤ minimizing the cost
expressed as a function of U, i.e., J (U) = J (X(U), U).
We perform such optimization using a second order method,
which affords a quadratic convergence rate for initial guesses
sufficiently close to local minima. For this purpose, we
employ sensitivity analysis [5, 7, 8, 9] to compute the first
and second derivatives of the cost function:

dJ
dU

=
@J
@X

S+
@J
@U

, (5a)

d
2J

dU2
=

✓
d

dU

@J
@X

◆
S+

@J
@X

dS

dU
+

d

dU

@J
@U

(5b)

⇡ S> @
2J

@X2
S+ S> @2J

@U@X
+

@2J
@X@U

S+
@2J
@U2

,

(5c)

where S :=
dX
dU is the sensitivity matrix. We employ the

generalized Gauss–Newton approximation (5c) in place of
the Hessian (5b) to reduce the computational burden and
guarantee the semi-positive definiteness of the second deriva-
tive [10]. To calculate S, we define the following vector of
dynamics residuals:

G =
⇥
G>

0 G>
1 . . . G>

NT�1

⇤>
, (6)

where
Gk := xk+1 � gk(xk, uk, p) . (7)

By construction, it holds G(X,U) = 0, 8U. Then, under
the assumptions of Dini’s implicit function theorem, we can
eventually write:

S = �
✓
@G

@X

◆�1 @G

@U
. (8)

We observe that (8) only requires partial derivatives, which
are easy to compute analytically given that (4) has an analytic

Support polygon

Center of mass

Center of pressure

Fig. 4: Quadrupedal robot represented as a variable-height inverted pendu-
lum. The translational dynamics of a legged system making contact with
the ground can be approximated using the variable-height inverted pendulum
model (left). A diagram of the forces acting on a two-dimensional projection
of the system is on the right. For brevity, we depict a 2-dimensional case
where the inverted pendulum lies on the xz-plane in this figure.

expression. Also, by making the vector X, for which we can
write an explicit expression through (4), artificially implicit,
we can employ efficient batch approaches, such as sparse
Gauss–Newton [10].

B. Simplified Robot Dynamics
In this section, we describe the VHIPM [6], which we

use as a simplified, low-dimensional model for the NMPC
formulation we adopt in this work. It represents a legged
robot as a point mass m concentrated at the system’s
center of mass r. The point mass is attached to a massless
telescoping rod in contact with flat ground. The contact point
of the rod is at the center of pressure (CoP) of the robot xcg,
i.e., the location at which the resultant ground reaction force
vector f would act if it were considered to have a single point
of application [29]; a graphical description of the VHIPM is
provided in Fig. 4.

The CoP always exists inside the support polygon of
stance foot positions si 2 R3 3. Therefore, we express it
as a convex combination

xcg =

X

si2�

wi si, (9)

where � is the set of the stance foot positions, and wi 2
R�0 is a non-negative scalar weight corresponding to si that
satisfies X

i

wi
= 1 . (10)

Since the point mass has no rotational degrees of freedom,
the moment of the force f about r is zero:

(r� xcg)⇥ f = 0 ;

this implies that (r� xcg) and f lie on parallel lines. Thus,
it holds

f =
r� xcg

kr� xcgk2
kfk2 . (11)

3The CoP is always defined for legged machines in contact with the
environment. In contrast, the zero moment point (ZMP) of a robot, where
the horizontal components of the moments due to ground reaction forces
applied to the system are zero, only exists for dynamically balanced gaits.
However, when the ZMP is defined, it always coincides with the CoP [30].



From triangle similarities, it follows that:

kfk2 =
kr� xcgk2

rz
fz , (12)

where rz and fz denote the components of r and f along
the z-axis, respectively. Combining both (11) and (12), we
can write

f = (r� xcg)
fz
rz

. (13)

Finally, we can plug (13) into Newton’s second law for the
point mass, resulting in:

mr̈ = f +mg

= (r� xcg)
fz
rz

+mg , (14)

where g =
⇥
0 0 g

⇤> is the gravitational acceleration.
As shown in (14), we can control the point mass accelera-

tion by modulating the CoP position xcg and the component
of f along the z-axis. We perform the following change of
variables:

fz = m(ḧ+ kgk2) , (15)

that allows us to directly issue net vertical acceleration
commands by means of the control input ḧ. By inserting
(9) and (15) into (14), we finally obtain the equations of
motion of the system:

fIPM(r, u, �) =: r̈ = (r�
X

si2�

wi si)
ḧ+ kgk2

rz
+ g (16)

with control input vector u :=

h
ḧ w1 w2 . . . wk�k

i>
, and

system parameters si 2 �.
We note that when no feet are in contact with the ground,

(14) reduces to the equation of a projectile motion, i.e.,
r̈ = g, and the system cannot be controlled. However, the
capability of MPC to reason about time horizons rather than
time instants enables our controller to gracefully overcome
such uncontrolled states and, thus, handle dynamic gaits with
extended flight phases.

C. Nonlinear Model Predictive Control
This section describes a single shooting MPC strategy [24]

using the inverted pendulum model presented in Section IV-
B. The optimization variables comprise vertical accelerations
of a legged robot center of mass, stepping locations, and
through corresponding weights, CoP positions. Instead of
representing footholds as time-varying control inputs and
enforcing transition constraints to ensure that stance feet
do not move [19], we regard each stepping location as
a single system parameter shared between multiple time
steps. This approach significantly reduces the total number
of optimization variables and allows for faster solution times.

Henceforth we denote the physical quantities sampled at
time t + k�t, k 2 {0, 1, . . . , NT} using the subscript k,
where �t 2 R>0 is the time step duration.

Based on the desired gait pattern, we fix the timings at
which touchdown events occur over the optimization time

horizon, and we associate each with a corresponding stepping
location si. Finally, we stack all the footstep positions in a
vector s :=

⇥
s1 s2 . . . sNf

⇤> sorted into footfall order, where
Nf is the total number of footsteps.

To discretize the continuous VHIPM dynamics (16), we
employ a semi-implicit Euler method; given rk and rk�1 we
approximate the point mass velocity at time steps k and k+1,
respectively, as ṽk ⇡ (rk�rk�1)/�t and ṽk+1 ⇡ ṽk+r̈k�t,
where r̈k can be computed using (16). Finally, we can write:

rk+1⇡ rk + ṽk+1�t

= rk + ṽk�t+ r̈k�t2

= 2rk � rk�1 + r̈k�t2

= 2rk � rk�1 + fIPM(rk, uk, �k)�t2

=: gIPM,k (rk�1, rk, uk, s) , (17)

where �k ✓ {s1, s2, . . . , sNf} denotes the set of the stance
foot positions at time step k.

Let us redefine the stacked state and input vectors for
the discretized IPM as X = [r1 r2 . . . rNT ]

> and U =

[u0 u2 . . . uNT�1 s]>. Given a reference trajectory r⇤k for
k 2 {0, 1, . . . , NT}, and a set of reference stepping loca-
tions si⇤, i 2 {1, 2, . . . , Nf}, we define the following cost
function:

J (X, U) :=

NT�1X

k=0

k(rk+1 � rk)� (r⇤k+1 � r⇤k)k22 (18a)

+

NT�1X

k=0

khk+1 � h⇤
k+1k22 (18b)

+

NfX

i=1

min (Nf,i+3)X

j=i+1

K1k(si � sj)� (si⇤ � sj⇤)k22

(18c)

+

NT�1X

k=0

 
K2

2
k1�

X

i

wi
kk22 +

X

i

S�0(w
i
k)

!
,

(18d)

where (18a) penalizes base velocity tracking errors, (18b)
penalizes base height tracking errors, (18c) regularizes the
displacements between adjacent stepping locations, and (18d)
is a soft constraint on the stance foot weights wi

k enforc-
ing both (10) and nonnegativity. We define S�r : R !
R�0, 8r 2 R as a C2-continuous function following [31,
eq. (8)] with unitary stiffness and ✏ = 0.1.

We note that the term (18c) penalizes relative positions be-
tween stepping locations to make the corresponding support
polygons loosely resemble the reference support polygons
[25]. Also, we do not add cost terms for pairs of footstep
positions separated by more than three touchdown events
since we assume they are not significantly correlated.

Given the objective function (18), we formulate our MPC
as the following unconstrained optimization problem:

U?
= argmin

U
J (X(U), U) , (19)
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Fig. 5: A dog’s motion capture data sequence (first row) reproduced on a physically simulated (second row) and a real (third row) Unitree A1 robot.
The plots show the simulated robot base’s forward and sideways speed trajectories along with references extracted from the corresponding animal motion
(last row). The root-mean-square errors for the two plots are ⇠0.16m s�1 and ⇠0.17m s�1, respectively.

where the stacked state vector X(U) is obtained through
forward integration of (17) given the initial conditions r0
and r�1 := r0 � v0 �t.

To solve the optimal control problem (19), we employ an
SGN solver [10], and we compute the required derivatives
using SA4 – see Section IV-A. Once we compute a descent
direction, we perform a backtracking line search, and we
interrupt the optimization if the cost function (18) does not
improve more than a predefined relative tolerance.

V. RESULTS

We verify the effectiveness of our control pipeline in
a series of simulation and hardware experiments with the
quadrupedal robots Unitree Aliengo [11] and Unitree A1
[12]. We use publicly available motion data recorded from a
dog [32], which includes unconstrained motions with varying
walking speeds. Additionally, we use data collected in-house
from a sheep trained to walk on a treadmill. The body
dimensions of the animals and the robots are provided in Ta-
ble I. For the simulation experiments, we adopt a physically
simulated environment based on the Open Dynamics Engine
(ODE) [33] with a step size of 1/480 s. In all our tests, we
employ the same set of parameter values listed in Table II.
With these settings, we manage to run the MPC at a rate
of ⇠250Hz on an i7-9700K CPU. Our two-step integration
scheme makes it possible to not include velocities in the state
vectors but only positions, thus enabling three-dimensional
states. This dimensionality reduction comes at the cost of

4We notice that the discretized dynamics (17) at time k are a function of
both rk and rk�1 due to our choice of time-stepping scheme, in contrast to
the formulation (4) presented in Section IV-A. However, it is easy to verify
that (8) is valid also for dynamics equations spanning multiple time steps.

TABLE I: Body dimensions of animals and robots. Body height: height of
the sacrum for animals and height of the center of mass of the base for
robots. Measured in the nominal standing pose. Body length: measurement
from the sacrum to the cervical vertebra for animals and length of the base
for robots. Limb length: measured in the fully-stretched configurations.

Animals Robots
Dog Sheep Aliengo A1

Body height 0.46m 0.8m 0.4m 0.3m
Body length 0.42m 0.7m 0.345m 0.25m
Forward limb length 0.4m 0.51m 0.5m 0.39m
Hind limb length 0.45m 0.62m 0.5m 0.39m

slightly less sparse dynamics Jacobians that feature a non-
zero block diagonal band below the main diagonal.

Fig. 5 shows snapshots of simulation and real-world
experiments conducted on a Unitree A1 robot that reproduced
a slow-paced walk gait of a dog. We include more footage
of our experiments in the supplementary video. They show
that our method can recreate unstructured stepping patterns
and natural body movements of animals with different mor-
phologies and dimensions. As detailed in Section II-A, we
can easily adapt the control pipeline to various robot models
thanks to our retargeting scheme.

Fig. 6 highlights the effect of the foothold optimization
on the leg configurations. In the simulation experiment,
we measured the step width of Unitree Aliengo while it
replicates a dog’s gait and compared the one from our
pipeline to the one from our previous motion control pipeline
[4] that relies on Raibert’s heuristics: from here on out, we
refer to it using the authors’ names: Kang et al., 2021. We
observe that Raibert’s heuristics tend to yield too aggressive
displacements for the feet when the target motions are highly
dynamic: this often leads to undesirable crossing or excessive
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Fig. 6: Hind leg configurations (top, at time 21.05 s) and a step width
plot (bottom) of Unitree Aliengo while it replicates a dog’s walk gait in
simulation using the previous control pipeline (red) and our new pipeline
(blue). The lines in the plot are the trajectories of the hind feet in the robot
base local frame along the sideways direction; the colored area between
them corresponds to their distance along the same axis.

stretching of the limbs. In contrast, by optimizing stepping
locations, our method can sustain appropriate step widths
while ensuring dynamic stability. This detail is crucial for
robustly reproducing animal movements, which are generally
lively and agile.

Finally, we conducted a disturbance rejection test in sim-
ulation on the Unitree A1 robot. Specifically, we applied a
constant lateral force of 27N to the robot for 0.8 s while it
reproduced a sheep’s trot gait. Once again, we compare our
control pipeline to the prior one. As shown in Fig. 7, while
the latter overreacts to the external disturbance and outputs
unfeasible target accelerations, ours manages to adjust the
step width adequately and reject the unexpected push.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a motion capture-driven locomo-
tion controller that recreates animal motions on quadrupedal
robots. Our motion controller reproduces the unstructured
footstep timings and natural body movements of given ani-
mal motions through a simple motion retargeting strategy. It
is not constrained by a specific morphology; therefore, we
can apply it to different robot platforms with mocap data sets
collected from a variety of legged animals. At the core of our
pipeline, our new NMPC method outputs optimal stepping
locations and base trajectories, thus enabling a robot to track
target animal motions more robustly. We demonstrate that the
simultaneous optimization of footholds and body trajectories
effectively prevents undesirable leg-crossing or -stretching
configurations, which often arise when tracking abrupt speed
changes or faster-paced behaviors using previous state-of-
the-art control methods [4]. Most importantly, it significantly
improves the ability of the motion controller to reject unex-
pected disturbances.

In our experiments, we use the VHIPM as a simplified
template for a robot. Such a solution significantly reduces
the size of the optimal control problem and allows for very
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Reference

Fig. 7: Snapshots of a simulated Unitree A1 robot during a perturbation
test (top), a plot of its base height trajectories (middle) and a plot of its
sideways speed (bottom). We apply a constant force (red arrow) to the
robot from 3.2 s to 4 s while it imitates the trot gait of a sheep (shaded
area in yellow). While the previous control pipeline (red) fails to withstand
the disturbance, our new control pipeline (blue) succeeds by electing an
appropriate sidestep size.

TABLE II: Parameter values for the animal motion data post-processing and
MPC planner.

Dog Sheep
Foot height threshold ✓height 0.05m 0.15m
Foot velocity threshold ✓velocity 0.8m/s 1.5m/s
Phase duration threshold ✓phase 0.1 s 0.1 s
Body forward speed scaling factor 0.5 0.25
Body sideways speed scaling factor 0.2 (A1) / 0.25 (Aliengo)
Body turning speed scaling factor 0.2 (A1) / 0.25 (Aliengo)

MPC Time step size 1/30 s
Planning time horizon NT 30 (1 s)
Foothold regularizer weight K1 0.1
Soft constraint weight K2 100

efficient computation times, but it ignores the orientation
dynamics of the system. Consequently, we solely address
the orientation dynamics through a whole-body controller
on a time instant-level rather than time horizon-level. Nev-
ertheless, our MPC formulation is applicable to different
dynamics models for quadrupedal locomotion as we de-
scribed in the related paper [5]. As a future investigation, we
are interested in combining our method with more complex
dynamics models such as the SRBD and augmenting them
with the same foothold optimization described in this work.
We plan to explore the performance achievable in capturing
small variations and nonperiodic patterns of animal motions
by accounting for the orientation dynamics and physical
constraints such as friction cone constraints and joint torque
limits.

Furthermore, we intend to make our motion controller
responsive to a user’s high-level commands by integrating
a gait planning strategy that imitates animal gait patterns.
We will complement our framework with a data-driven
gait planning method that can generate animal-like gaits on
quadrupedal robots given a user’s inputs [4].



Finally, we aim to investigate more fundamental research
questions in future work. Researchers hypothesize that ani-
mal motion patterns emerge to maximize robustness, agility
and energy efficiency [34]. We are curious whether we
can achieve more benefits than just improved aesthetics by
transferring these motion patterns to legged robots. Thus, we
are interested in analyzing efficiency- and robustness-related
aspects despite the different morphologies, dimensions, and
actuation principles of animals and robots.
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